Al Data Science Specialist v1.0

Exam 1D0-184

Domain 1: Data Science Overview

1.1: Fundamentals

- 1.1.1: Define machine learning
- 1.1.2: Explain data science applications for business
- 1.1.3: Distinguish the difference between AI and data science
- 1.1.4: List applications of data science
- 1.1.5: Describe what is the purpose of data science?
- 1.1.6: Explain what a correlation coefficient is and how it is calculated

1.2: Legal, Ethics and Privacy Considerations

- 1.2.1: Explain societal impact of AI
- 1.2.2: Explain the implications of biased predictions by data models
- 1.2.3: Apply ethical reasoning in decision making scenarios
- 1.2.4: Identify ethical guidelines to be applied in data science
- 1.2.5: Discuss web security standards
- 1.2.6: Explain data protection security methodologies
- 1.2.7: Demonstrate risks associated with data privacy and integrity
- 1.2.8: Demonstrate data collection security principles

1.3: Career

- 1.3.1: Apply data evaluation and data modeling for business solutions
- 1.3.2: Describe industries in need of data science
- 1.3.3: Read scientific articles, conference papers, etc. to identify emerging analytic trends and technologies
- 1.3.4: Learn about the latest developments in your professional field

Domain 2: Analysis

2.1: Exploratory Data Analysis

- 2.1.1: Use data mining techniques
- 2.1.2: Explain clustering techniques and their use cases
- 2.1.3: Conduct exploratory data analysis
- 2.1.4: Explain how to capture properties of distributions (mean, variance, skewness, kurtosis)
- 2.1.5: Analyze sets of data using descriptive statistical methods
- 2.1.6: Construct frequency distributions

2.2: Modeling and Visualization Techniques

- 2.2.1: Create a visualization of one or two variables in order to understand the data better
- 2.2.2: Perform feature selection for supervised and unsupervised analysis
- 2.2.3: Explain curse of dimensionality
- 2.2.4: Explain the difference between model underfitting and overfitting

- 2.2.5: Explain the different types of errors made by a predictive model
- 2.2.6: Apply dimensionality reduction techniques (e.g., PCA) for data visualization
- 2.2.7: Explain the difference between classification and regression
- 2.2.8: Identify different performance metrics for classification (accuracy, ROC curve, AUC, F1)
- 2.2.9: Analyze data using correlation and linear regression methods
- 2.2.10: Describe data analyzing techniques

2.3: Statistics

- 2.3.1: Provide statistical and mathematical solutions
- 2.3.2: Explain linear models and generalized linear models
- 2.3.3: Explain bias-variance trade off
- 2.3.4: Compare and contrast different model evaluation techniques and their pros and cons
- 2.3.5: Define causal inference and with which kind of data it can be performed
- 2.3.6: Explain importance of checking model assumptions before deciding on final model
- 2.3.7: Explain how to detect bias in a model
- 2.3.8: Explain how to evaluate success of model fitting
- 2.3.9: Describe statistical power and why it is important
- 2.3.10: Explain difference between parametric and non-parametric models
- 2.3.11: Explain how to decide which performance metrics to use given a prediction problem
- 2.3.12: Explain how to create confidence intervals around estimations
- 2.3.13: Explain the difference between the frequentist and Bayesian approaches to probability
- 2.3.14: Explain the concept of hypothesis testing

Domain 3: Managing Data

3.1: General Data Management

- 3.1.1: Develop data structures and data warehousing solutions
- 3.1.2: Explain how to analyze big datasets through distributed systems (e.g., Hadoop, MapReduce)
- 3.1.3: Write SQL queries to fetch the data
- 3.1.4: List the different stages in the data cycle
- 3.1.5: Explain how to maintain a dataset through integration and scrubbing
- 3.1.6: Demonstrate data source attributes, benefits and collection strategies
- 3.1.7: Explain data selection criteria and procedures
- 3.1.8: Describe methods for acquiring data

3.2: Querying Databases

- 3.2.1: Types of databases and query languages
- 3.2.2: Query languages strengths and weaknesses
- 3.2.3: Indexes and Query efficiency

3.3: Data Preparation

- 3.3.1: Handle categorical variables
- 3.3.2: Explain missing value problem and handling strategies
- 3.3.3: Explain what outlier is and how an outlier detection process works

3.3.4: Demonstrate data preprocessing and normalization

Domain 4: Professional Skills

4.1: Programming

- 4.1.1: Explain basic concepts about algorithm design such as computational complexity
- 4.1.2: Program in R
- 4.1.3: Use matplotlib and/or seaborn to visualize data
- 4.1.4: Use Pandas to represent data
- 4.1.5: Use common machine learning packages
- 4.1.6: Write syntax for an analysis package (e.g., SPSS, SAS, R)
- 4.1.7: Program in Python
- 4.1.8: Solve statistical problems using programming languages

4.2: Conduct Research

- 4.2.1: Design and conduct surveys, opinion polls, or other instruments to collect data
- 4.2.2: Perform an A/B test to decide of treatment effect
- 4.2.3: Describe training and testing datasets and their role in analysis and modeling

4.3: Consulting

- 4.3.1: Provide technical support for existing reports, software, databases, dashboards, or other tools.
- 4.3.2: Advise others on analytical techniques

4.4: Communicating Results

- 4.4.1: Deliver oral or written presentations of the results of modeling and data analysis
- 4.4.2: Compile reports, charts, papers, presentations or white papers that describe and interpret findings of analyses
- 4.4.3: Prepare data visualizations to communicate complex results to non-statisticians
- 4.4.4: Describe how to interpret and report data analysis results

4.5: Deploy Models

- 4.5.1: Maintain and update existing models using fresh data or to make new predictions.
- 4.5.2: Choose a methodology for deploying machine learning models for applications.
- 4.5.3: Develop scalable frameworks
- 4.5.4: Describe how to scale a data science solution

4.6: Problem Identification

- 4.6.1: Identify problems that can be solved using machine learning models or data analyses.
- 4.6.2: Identify business problems or management objectives that can be addressed through data analysis
- 4.6.3: Identify solutions to problems (staffing, marketing, etc.) using the results of data analysis